

RTD transmitter

5102

- Cost effective RTD transmitter
- Input for Pt100, Ni100 or Ohm
- Linearized analog output
- 1- or 2-channel version
- DIN rail mounting

FH[< €

Advanced features

 The 5102 transmitter can be configured with the software program PReset 5000 using a DOS-based PC and the Loop Link communications unit.

Application

- Linearized temperature measurement with Pt100 (to IEC 715) or Ni100 (to DIN 43760) sensors.
- Conversion of linear resistance change to standard analog current/voltage signal from for example valves or linear movements with attached potentiometer.
- Signal simulator via externally mounted 10-turn potentiometer, to aid with installation and commissioning the plant.
- 3-wire connection cable compensation or 2-wire connection without cable compensation.
- Sensor error detection with Upscale, Downscale or custom set values
- Reversible inputs with 0% set to maximum value of the desired input range and 100% set to the minimum value of the desired input range.

Technical characteristics

- Analog current output can be configured to any current within 0...20 mA range.
- Voltage output range is selectable between 0...10 VDC and 0...1 VDC by use of internal jumpers.
- Programming can be performed with or without a power supply.

Order:

Туре	Channels	s	
5102	1 channel	:	Α
	2 channels	:	В

Environmental Conditions

Specifications range	-40°C to +60°C
Calibration temperature	2028°C
Relative humidity	< 95% RH (non-cond.)
Protection degree	IP20

Mechanical specifications

Dimensions (HxWxD)	109 x 23.5 x 130 mm
Weight approx	170 g
DIN rail type	DIN 46277
Screw terminal torque	0.5 Nm

Common specifications

Supply voltage	
Internal consumption	
Warm-up time	
Communications interface	Loop Link
Signal / noise ratio	Min. 60 dB
Signal dynamics, input	17 bit
Signal dynamics, output	16 bit
Response time (090%, 10010%)	< 165 ms
Temperature coefficient	< ±0.01% /°Camb.
Linearity error	< 0.1% of span
EMC immunity influence	< ±0.5% of span

Input specifications

Max. offset	50% of selected max. value
RTD input	Pt100, Ni100, lin. R
Cable resistance per wire	
(max.), RTD	1050 Ω (programmable)
Sensor current, RTD	> 0.2 mA, < 0.4 mA
Sensor error detection, RTD	Upscale

Output specifications

Max. offset Current output: Signal range Min. signal range	020 mA 5 mA
Voltage output: signal rangeVoltage output, min. signal	010 VDC
range	
Load (max.)	
Load stability, current output	
Current limit	
*of span	= of the presently selected range

Approvals

EMC	EN 61326-1
EAC TR-CU 020/2011	EN 61326-1